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A mainly experimental investigation is presented on the vibrational characteristics of
angle-ply laminate made of carbon/epoxy composite material, considering the effect of
flexural–torsional coupling stiffness. This consists of a resonance test on a cantilevered
laminated plate model by using laser holographic interferometry. An exact comparison of
the coupling effect was achieved by employing two special types of angle-ply laminates, each
consisting of eight plies in which one type had the least possible, and the other type, no
coupling stiffness at all. The observed results show that the effect of flexural–torsional
coupling stiffness on the resonance frequencies is only marginal. By contrast, the vibrational
mode shapes are found to be affected considerably by the coupling stiffness. Moreover, the
amount of this coupling effect is also observed to depend both on the fiber orientation and
the aspect ratio of the plate model. An analytical study was also conducted by using the
Ritz energy method and a good agreement between the experimental and the theoretical
values is observed upon comparison.
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1. INTRODUCTION

Symmetrically fabricated angle-ply laminates, in general, have the flexural–torsional
coupling stiffnesses expressed as D16 and D26 in the constitutive relation between moment
resultants and curvatures. In the application of those laminated plates as the components
of a structural system, the presence of these coupling stiffnesses may yield undesirable
mechanical behaviors. For a symmetric angle-ply laminate, these coupling stiffness values
decrease as the number of laminae increases and hence the laminate thickness. Therefore,
to take advantage of angle-ply laminates in thin aerospace structures, the laminate is very
often a symmetric one with flexural–torsional coupling stiffness. Dynamic studies of
cantilevered anisotropic laminates having D16 and D26 coupling stiffness have been carried
out by several authors [1–3]. Jensen and Crawley [4] mainly conducted theoretical
estimations of frequencies and mode shapes by comparing the three types of solution
techniques, namely, partial Ritz, Rayleigh–Ritz and finite element methods, and concluded
that chordwise flexure had to be considered in any analysis of bending–torsion coupling.
The Ritz method with algebraic polynomial displacement function has been employed by
Narita and Leissa [2], and is shown to give accurate upper bounds of frequencies. For
various boundary conditions of more complicated plate vibrational problems, the
polynomial functions have also been employed by Laura et al. [5, 6] for isotropic material,
and by Qatu for composite material [7]. Effects of sweep angle on frequencies and
associated mode shape have been examined by Fukunaga et al. [8] for a composite wing
model using lamination parameters. In these studies, although the effect of the coupling
stiffness on the mode shapes can be identified theoretically, no experimental result is
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available. For the unidirectional filamentary composite material panels suspended by
strings, the experimentally measured nodal patterns obtained with a hand-held velocity
probe have been presented by Clary [9]. However, the coupling effect both on frequency
and mode shape with the model behavior of laminates has not received much research
attention and has not so far been addressed especially by experiment to the best of our
knowledge.

An attempt has therefore been made in this paper to understand the influence of the
flexural–torsional coupling stiffness on the vibrational characteristics of angle-ply
laminates using experimental methods. The experimental results obtained by holographic
interferometry have also been compared with analytical results employing the Ritz method.
It has been proven theoretically that the flexural–torsional coupling stiffness vanishes to
zero in some cases of angle-ply laminates [10]. This requires a special stacking sequence
of the laminate, namely, a symmetric–antisymmetric configuration about the middle
surface of the plate symbolically expressed as

[(A)/(−A)], (1)

where

(A)= (+u/−u/−u/+u) and (−A)= (−u/+u/+u/−u). (2)

The bending stiffness matrix of a laminate defined by equation (1) can be written as

Dij = &D11

D12

0

D12

D22

0

0
0

D66' i, j=1, 2, 6. (3)

It must consist of a minimum of eight plies of equal thickness, each for a chosen fiber
orientation. Although this laminate is not symmetric with respect to its mid-plane, the
coupling matrix that gives coupling between extension and bending also vanishes
completely.

On the other hand, if we fabricate a symmetric laminate which has a composition of

[(A)/(A)], (4)

its stiffness matrix becomes

Dij = &D11

D12

D16

D12

D22

D26

D16

D26

D66' i, j=1, 2, 6. (5)

The values of D16 and D26 remain, whereas all the other stiffnesses including the extensional
stiffness matrix are equal to the values of a special symmetric–antisymmetric angle-ply
laminate denoted by equation (1). For the symmetric laminate, though the magnitude of
the coupling stiffness can be varied by varying the stacking sequence, the stacking of an
eight-ply laminate considered here has the minimum values of coupling stiffness possible.
In other words, the two different laminates whose stackings are defined by equations (1)
and (4) exhibit identical elastic properties except for the presence of flexural–torsional
coupling stiffness. Moreover, the resulting coupling stiffness of the symmetric laminate
considered have minimum possible values among the eight-ply laminate. Therefore, by
comparing the vibrational characteristics of the above mentioned two types of laminates,
the influence of the flexural–torsional coupling stiffness could be studied exactly. In the
experiment, a laser holographic interferometry was used to measure the resonance
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frequencies and to record the mode shapes of a cantilevered laminate, whereas the
analytical study was carried out using the Ritz method.

2. EXPERIMENTAL PROCEDURE

In the experiment, laser holographic interferometry was employed to investigate the
vibrational characteristics of the angle-ply laminates. In general, the undeformed image
of a test specimen must be recorded first, especially in the real-time method. This procedure
can be achieved without difficulty by using a thermoplastic plate as the film plate. The
thermoplastic plate consists of a clear conductive coating layer, a photoconducter layer
and a thermoplastic layer, and the principle of recording the hologram is based on a
phenomenon in which a heated thermoplastic is deformed by the electrostatic force
according to the exposed light intensity. Its characteristics are: development can be done
electrically in a few seconds without changing the plate’s position; because of high
diffraction efficiency, the reconstructed image is bright; and the plate is re-usable.
Moreover, by the time-average method using the dry plate, which is more sensitive than
the thermoplastic plate, the micro-ordered out-of-plane deflection can be recorded clearly
over the whole plate.

Carbon/epoxy laminated plates having seven different fiber orientations, as listed in
Table 1, were fabricated, and test specimens were made out of this with a width of
302 0·1 mm and a thickness of 2·09 mm. Additionally, to understand the effect of clamped
boundary, angle-ply laminates having a width of 602 0·1 mm were also made and tested.
The four independent engineering constants of orthotropic fiber composite material were
obtained by tensile tests using 0 and 90° laminates [11], and 245° laminate [12]. Measured
values of these lamina constants were EL =1·02×1011 N/m2, ET =7·52×109 N/m2,
nLT =0·328 and GLT =3·62×109 N/m2, which were used to calculate the analytical results.
The experimental set-up is shown schematically in Figure 1, in which a 300-mW argon ion
laser having a wavelength of 514·5 nm and the associated optical components are placed
on a pneumatically supported steel table eliminating any undesired oscillations. Test
specimens were very lightly sprayed white over the effective length to achieve higher optical
reflectivity.

In the experiment, the specimen was clamped at one end to form a cantilevered plate,
and was acoustically excited. Owing to the real-time holographic interferometry, the
change of the fringe pattern could be observed through a monitoring system as the
excitation frequency swept slowly upwards. When a rapid increase in the fringe number
was observed, a peak of the fringe number was determined by fine tuning. Thus, the
excitation frequency at that peak was regarded as the resonance frequency of the test
specimen. Then, after checking the resonance frequencies by the real-time method, each
resonant mode shape was recorded by the time-average method. The holographic plates
used here were Agfa 8E56 dry plates, and exposure time was 1 s.

T 1

Test specimens

Material Composition Fiber angle (deg.)

Unidirectional u8 0, 90
Symmetric (+u/−u/−u/+u) sym. 15, 30, 45, 60, 75
Anti-symmetric (+u/−u/−u/+u) anti-sym. 15, 30, 45, 60, 75
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Figure 1. Schematic apparatus of laser holography. NDF: ND filter; SM: spherical mirror; BS: beam splitter;
S: shutter; SP: speaker; /: mirror.

3. RITZ METHOD

The Ritz method has been employed to calculate the resonance frequencies and the mode
shapes. For a cantilevered laminated plate having length, width, and thickness defined by
a, b and h, respectively (see Figure 2), the maximum strain energy, Vmax , and the maximum
kinetic energy, Tmax , can be written in the non-dimensional forms of

Vmax = 1
2 (D0 /aa2) g

1

0 g
1

−1

{k*}T[D*]{k*} dj dh, (6)

Tmax = 1
2 (D0 /aa2)V2 g

0

1 g
1

−1

W2 dj dh, (7)

where D0 is taken as a reference bending stiffness and is equal to D11 of 90° laminate, and
W is the out-of-plane deflection of the plate. The non-dimensional quantities are defined
by

j= x/a, h= y(b/2), a= a/b, (8)

V=va2zr/D0, [D*]= [D]/[D0], {k*}= {12W/1j2 12W/1h22 12/1j 1h}T, (9)

where V is a frequency parameter, r is the mass density per unit area and [D] is the bending
stiffness matrix of angle-ply laminate. Narita and Leissa [2] employed a general polynomial
series for steady state solution given by the following equation incorporating the plate
boundary conditions.

W(j, h)= s
M

m=2

s
N

n=0

Cmn jmhn, (10)
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where Cmn are unknown coefficients. Based on the Ritz method, after substituting equation
(10) into equations (6) and (7), the total potential energy is minimized by equating the
partial derivative of the total potential with respect to each Cmn to zero as shown below.

1(Tmax −Vmax )/1Cmn =0 (m=2, 3, . . . , M; n=0, 1, . . . , N). (11)

The above equation yields the eigenvalue formulation expressed as

([K]−V2[L]){Cmn}=0, (12)

where [K] and [L] are the stiffness and mass coefficient matrices, respectively. By setting
the determinant of the resultant coefficient matrix, (= [K]−V2[L] =), equal to zero, the
non-dimensional frequency parameters can be obtained. Then, the coefficients Cmn can
subsequently be determined using the non-dimensional frequency parameter. The
vibrational mode shapes can also be obtained by substituting the determined values of Cmn

back into equation (10).
In the present study, the theoretical values were calculated by a polynomial series

approximation for the deflection shown in equation (10). As a result of the convergence
study, it was found that the maximum difference between the predicted frequencies with
(M, N)= (8, 6) and (M, N)= (9, 7) was less than 1% for all the cases considered.
Therefore, all the theoretical values were calculated by using (M, N)= (9, 7).

4. RESULTS AND DISCUSSION

The measured and calculated values of resonance frequencies for the first six modes of
120×30 mm laminates and the first three modes of 120×60 mm laminates are shown in
Figures 3 and 4, respectively. Although the number of the experimental values of
frequencies presented in Figure 3 was expected to total 72 cases, tuning of resonance
frequencies was not possible for three cases. This was due to limitations of acoustic
excitations to higher frequencies and closely spaced frequencies of different modes. In both
figures, the differences of the measured frequencies between the two types of the laminates
are found to be insignificant and to be similar to those of the analytical predictions by
the Ritz method. Therefore, it is concluded that the coupling effect on the resonance
frequencies of the symmetric laminates considered in the present study is almost negligible

Figure 2. Configuration of test specimen.
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Figure 3. Comparison of non-dimensional frequencies for the first six modes (120×30 mm laminates). Ritz:
—, anti-symmetric; -----, symmetric. Experimental: ×, anti-symmetric; w, symmetric.

Figure 4. Comparison of non-dimensional frequencies for the first three modes (120×60 mm laminates). Ritz:
—, anti-symmetric; ----, symmetric. Experimental: ×, anti-symmetric; w, symmetric.
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except at certain particular values of laminate orientation. As seen from Figures 3 and 4,
at these particular laminate orientations, the curves for different modes of vibration
intersect each other for the case of the anti-symmetric laminate. By contrast, the curves
veer away slightly from each other for the symmetric laminate owing to the coupling effect.

In the present experiment, the fringe patterns of the vibrational modes corresponding
to the measured resonance frequencies were recorded for all the cases by laser holography.
In order to demonstrate the apparent difference between the fringe patterns of the special
anti-symmetric and the symmetric laminates, the fringe patterns of some of the selected
cases of angle-ply laminates are shown here. Figures 5 and 6 show the fringe patterns for
the first six modes of the 15 and 30° laminates, respectively. The photograph for the sixth
mode of the special anti-symmetric laminate is not available for the reason mentioned
above. Because the fringe patterns are almost symmetrical against the middle chord line
of the plate for the special anti-symmetric laminates shown in Figures 5(a) and 6(a), the
effect of flexural–torsional coupling being found to be absent is a fact also evidenced by

Figure 5. Fringe patterns of the first six modes (u=15°, 120×30 mm laminates). (a) Anti-symmetric; (b)
symmetric.
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Figure 6. Fringe patterns of the first six modes (u=30°, 120×30 mm laminates). (a) Anti-symmetric; (b)
symmetric.

the classical lamination theory. On the other hand, for the symmetric laminates shown
in Figures 5(b) and 6(b), the fringe patterns are found not to be symmetric against the
middle chord line of the plate, indicating that these mode shapes are affected by the
flexural–torsional coupling stiffness. Comparison of the same effect for the remaining cases
of angle-ply laminates indicates that there is an influence of coupling effect on the obtained
mode shapes; however, for the plate aspect ratio of the four cases considered, the coupling
effect is found to be decreasing gradually as the fiber orientation increases from 45°.
Additionally, the magnitude of this coupling effect could be identified from the fringe
patterns of Figures 5 and 6 based on the slope between the chordwise direction and the
vertical nodal lines of the flexural vibrations, especially for the second flexural mode. In
the next exercise, the second flexural mode is therefore examined more closely for all the
cases of fiber orientations and two cases of aspect ratio. For the special anti-symmetric
laminates presented in both Figures 7(a) and 8(a), it can also be verified that those
laminates have no flexural–torsional coupling stiffness because of the symmetrical fringe
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patterns obtained. On the other hand, we can see this coupling effect on the mode shapes
for the symmetric angle-ply laminates shown in Figures 7(b) and 8(b). Since the slope of
the nodal line corresponding to the second flexural mode is found to be varying with regard
to the fiber angle, it is evident that the magnitude of the flexural–torsional coupling effect
on the mode shapes depends on the fiber orientation. Moreover, when the width of the
plate increases, the clamped boundary effect appears as shown in Figure 8, especially for
the 15° laminates. Also, the fringe patterns for the 45, 60 and 75° laminates of Figure 8(b)
are found to be unsymmetrical when compared to those of Figure 7(b). This suggests that
the degree of the coupling effect depends also on the plate aspect ratio.

In order to establish the above mentioned fact, the relationship of the slope of the second
flexural mode’s nodal line with respect to the aspect ratio has been studied both analytically
and experimentally considering the 15, 30 and 45° symmetric laminates.

These variations, namely, the slope of the nodal line against the plate aspect ratio, are
shown in Figure 9. It can be seen from this figure that the slope of the nodal line changes
extensively with respect to both plate aspect ratio and fiber orientation, an observation
also noted from the results of Figures 7 and 8. The agreement between the results obtained

Figure 7. Fringe patterns of the second flexural mode (120×30 mm laminates). (a) Anti-symmetric; (b)
symmetric.
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Figure 8. Fringe patterns of the second flexural mode (120×60 mm laminates). (a) Anti-symmetric; (b)
symmetric.



30

0
1

Aspect ratio

S
lo

p
e 

(d
eg

.)

60

90

2 3 4 5 6 7

30

0
2

Aspect ratio

S
lo

p
e 

(d
eg

.) 60

90

3 4 5

N
o

n
–d

im
en

sio
n

a
l freq

u
en

cy

120

80

40

–     361

Figure 9. Slope variation of the second flexural mode (symmetric laminates). Ritz: –·–·, u=15°; – – –, u=30°;
–––, u=45°. Experimental: w, u=15°; W, u=30°; r, u=45°.

Figure 10. Comparison of slope variation of the second flexural mode and non-dimensional frequencies
(u=30°, symmetric laminate). Top: Ritz; , 2nd mode; – – –, 3rd mode. Experimental: q, 2nd mode; Q, 3rd
mode. Bottom: , Ritz; W, experimental.
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Figure 11. Comparison of slope variation (u=30° laminates). (a) Anti-symmetric; (b) symmetric.

by the Ritz method and the experimentally measured values can be seen in Figure 9.
Therefore, it can be theoretically predicted that the coupling effect still remains when the
aspect ratio is increased enough, and takes a constant value in the limit corresponding to
the case of a beam. Since these minimum slopes are expected to be different for different
fiber orientations, as noted in Figure 9, the effect of coupling with respect to fiber
orientation could also be established.

The above mentioned coupling behavior of symmetric laminates close to the
degeneration point thus implies further examination is required into the effect of resonance
frequencies of these types of laminates close to the degeneration point. For this purpose,
the slope variation of a 30° symmetric laminate was considered next by comparing it with
the variations of the resonance frequencies as shown in Figure 10, in which the peak of
the slope variation is found to be near the point where the resonance frequencies of the
second and third modes are almost the same. In general, such a point where two
frequencies are exactly identical is called a degeneration point. At this point, a
flexural–torsional coupling behavior can be observed even for the special anti-symmetric
laminates, and incidentally for isotropic plates also. However, from the comparison of the
fringe patterns presented in Figure 11, it is evident that the change of the vibrational mode
shape is caused by the presence of the coupling stiffness. This is due to the fact that the
mode shapes for the special anti-symmetric laminate in Figure 11(a) are symmetrical for



–     363

Figure 12. Fringe patterns of the second flexural mode (symmetric laminates). (a) 120×60 mm; (b)
60×30 mm.
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all the cases except for the case of one aspect ratio, namely 2·8, whereas the fringe patterns
of the symmetric laminate in Figure 11(b) are unsymmetrical over a wide range of the
aspect ratio.

Additionally, the fringe patterns of the second flexural mode are shown in Figure 12
for the symmetric laminates which have the same aspect ratio but different dimensions
measuring 120×60 mm and 60×30 mm, respectively. For each fiber orientation, the
fringe patterns between these two types of laminates are found to be almost identical to
each other. Therefore, it is understood that the plate aspect ratio becomes an important
variable in determining the vibrational mode shape of cantilevered plate, and it can also
be considered that the degree of the flexural–torsional coupling effect on the vibrational
mode shape is identical for plates having the same aspect ratios.

5. CONCLUSIONS

Laser holographic interferometry has been applied to investigate the effect of
flexural–torsional coupling stiffness on the vibrational characteristics of angle-ply
laminates. It has been verified both experimentally and analytically that the coupling effect
on the resonance frequencies is very marginal in the case of the symmetric laminated plate
model studied here. However, the vibrational mode shapes are significantly affected by the
flexural–torsional coupling stiffness. Again, it is found that the degree of this coupling
effect of symmetric laminates depends both on the fiber orientation and the aspect ratio
of the test specimen. Moreover, it should be noted that the coupling effect on the
vibrational mode shape becomes maximum at the point where the resonance frequencies
of different modes are closely spaced. In the neighborhood of this degeneration point,
laminates having no coupling stiffness, namely orthotropic and even isotropic plates, will
also show flexural–torsional coupling behaviors. Finally, although the resonance
frequencies are generally overestimated by the Ritz method, it is found that the vibrational
mode shapes can be predicted with reasonably good accuracy by such a simple method.
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